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The boundary layer near the stagnation point in 
hypersonic flow past a sphere 

By T. K. HERRING 
Department of Mathematics, University of Manohester 

(Received 13 May 1959) 

When a sphere or other bluff body travels at supersonic speeds, a shock wave is 
formed close to the front surface. With increase of speed the air behind the shock 
is further compressed, and the shock wave moves closer to the surface. This paper 
considers the case where the region close to the stagnation point between the 
shock and the sphere can be taken to be a steady laminar boundary layer. 

The approximate solution of the equations of motion follows closely the classical 
work of Homann (1936), ideas similar to those of Lighthill (1957) being used to 
apply it to the problem in hand. It consists mainly in reducing the equations to 
ordinary differential form by assuming forms of the flow variables which satisfy 
the boundary conditions, notably at the shock wave. In  addition, several trans- 
formations are employed in order to simplify the equations and to increme the 
range of solutions, and also to facilitate the use of the 'Mercury' electronic com- 
puter in solving them. 

The results give an insight into some mpects of hypersonic flows. Included in 
this paper are a selection of temperature and transverse velocity profiles across 
the boundary layer and several graphs relating such quantities as the shock 
stand-off distance and the skin-frictioncoefficient with Reynolds number. The last 
two mentioned are the most interesting. The fkst set gives the surprising result 
that the shock stand-off distance increases with increase in Reynolds number, 
whereas it is known that the boundary-layer thickness decreases. The second set 
of graphs shows that the skin-friction coefficient is inversely proportional to a 
decreasing power of the Reynolds number when it is lower than order 108, but 
the indication is that it tends to the expected constant power of 4 when the 
Reynolds number is of order lo4. 

1. Introduction 
In this paper we investigate an interesting case where the region between the 

shock and the sphere can be taken to be a steady laminar boundary layer. A high- 
speed flow through a medium of very low density would seem to satisfy this 
condition. For, at low enough density, the Reynolds number can be so low (say, 
about lo4 or less) that the boundary layer will be laminar, but of thickness 
comparable to the stand-off distance of the shock. 

Now, in the atmosphere at heights of 60--100krn, the densities range from 
10-6 to 10-7~sg/cm3, and the temperatures vary from 180" to 360°K (Whipple 
1943). The Reynolds number of a sphere of diameter 25 om, travelling at dkmlsec 
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at an altitude of 80 km, is about 5 x 103. This region of the atmosphere thus pro- 
vides a practical setting for the problem under investigation. 

We shall assume that the surface of the body has not yet been heated signi- 
ficantly, and thus that it is a good approximation to take the sphere and free 
stream temperatures to be equal. 

By confining ourselves to the region close to the stagnation point, the shock 
wave can be taken, to a fair approximation, as spherical and concentric with the 
sphere. This is a result which has been verified under certain conditions both 
experimentally and theoretically. Oliver (1956) showed in experiments with a 
sphere and other bluff bodies at a Mach number of 5.8 that this was so, and he 
included in his paper excellent schlieren photographs of the phenomenon. 
A number of authors, including Lighthill (1957), Freeman (1956) and Chester 
(1956), have put forward theoretical treatments. Chester considered a perfect 
gas with constant specific heats (as we shall), and, by a method of successive 
approximations in which he assumed the shape of the shock and found the shape 
of the body, he was able to verify the above results. 

Now, close to the stagnation point the speeds are subsonic, and all com- 
pressibility effects are due to thermal variations in the fluid properties. The 
present work can therefore be compared with work on low-speed laminar 
boundary layers with varying temperatures. For example, Brown & Donoughe 
(1951) considered the problem of a two-dimensional steady laminar boundary 
layer on a straight porous wall, and they found solutions to the equations of 
motion when the wall temperature was varied. They were able to obtain a negative 
displacement thickness by cooling the wall, a result similar to one in this paper 
where the stand-off distance of the shock is found to increase with Reynolds 
number. 

The geometry of the problem we are considering is close to that of Homann 
(1936), who considered the steady incompressible flow in a boundary layer, along 
a surface of revolution, close to the stagnation point. He neglected terms of the 
order of the square of the transverse co-ordinate measured along the surface, 
and found that the form of the flow variables suggested by the axial symmetry 
and the constant thickness of the boundary layer, which is a correct result in this 
approximation, satisfied the boundary conditions and the equations of motion. 

In the paper by Lighthill (1957), an exact solution to the inviscidincompressible 
high-speed flow past a sphere was obtained. Lighthill showed that all the equa- 
tions of motion and boundary cmditions could be satisfied assuming a spherical 
shock concentric with the sphere. 

For the present problem we combine the approaches of Homann and Lighthill, 
using the forms of the flow variables suggested by the boundary conditions behind 
the shock wave. The use of the strong-shock conditions is found to be necessary 
to make the density dependent upon the normal co-ordinate yet independent of 
the transverse co-ordinate to the first order. With this simplification, the assumed 
forms of the flow variables satisfy the boundary conditions accurately. The 
inviscid terms of the equations of motion are satisfied accurately, and the viscous 
terms are satisfied to the first order in the transverse co-ordinate. A note on the 
approximation involved in using the strong-shock relations is included in § 3. 
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We will wsume for simplicity that the fluid is a perfect gas and that the specific 
heats at constant pressure and volume of the gas mixture are constant throughout 
the region of interest. In  a real flow, however, where there are very large tem- 
perature differences in the boundary layer, the variations in the ratio of the 
specific heats can be aa much aa 0.3. This is attributable to ionization and dis- 
sociation effects as well aa to the large range of temperatures. For this reason we 
shall quote results for different ratios of the specific heats. 

The first section of the paper is devoted to the formulation and simplification 
of the equations of motion, and several transformations are introduced to 
facilitate subsequent integrations. The second section concerns the derivation of 
the results and the discussion of interesting physical conclusions. 

2. Basicequations 
The equation of state of a perfect gaa is 

P = PRT, ( 1 )  

where R is the gas constant per gramme, p the pressure, p the density, and T the 
temperature. To simplify the problem further, we will take the viscosity /I to be 
proportional to T, and the Prandtl number Q = p P / k  to be a constant = 0-72. 
Here cp and c, are the specific heats at constant pressure and volume (cp/c, = y),  
and k is the thermal conductivity, which must also be proportional to T .  

We shall use spherical polar co-ordinates (r, 8, A )  with origin at the centre of the 
sphere and the axis 0 = 0 pointing upstream, and write the respective velocity 
components aa v,, ve, v,, with vA = 0 in the present caae of axial symmetry. The 
radius of the sphere is taken to be a, and that of the shock to be b, and suffixes 0 , l  
will refer respectively to the uniform conditions ahead of the shock, and those 
immediately behind. Also, we wil l  denote the enthalpy by 1 and let il& = V,/co, co, 
and V, be the values of the Mach number, speed of sound and axial velocity ahead 
of the shock. It is important to note that throughout this paper we are considering 
only the region where 8 is small (shaded in figure 1). 

The strong-shock relations are 

and 

vel = V,sin8, (3) 

Theae shock boundary conditions suggest that it may be useful to investigate 
whether an approximate solution with 

v, = w(r) cos 8, V, = u(r) sin 8, (6) 

p = p(r) ,  p = p(r)  +P(r)  sin2@, (7) 
17-2 
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may exist. The more complicated form of p is particularly suited to a boundary- 
layer type of theory, which is well known to be sensitive to the effect of pressure 
gradient. The msumptions (6) and (7) correspond to those of Homann (1936) and 
Lighthill (1957). 

The equations of motion in spherical polar co-ordinates are reduced to the 
axiaymmetric boundary-layer form by dimensional considerations and are listed 
below. The continuity equation becomes 

(sinepv,) = 0, 
a i a  

(Pvr) +am 
and the momentum equation for the 8-direction becomes 

Sphere 

0--0 _3 

Uniform region 

FIaTJRE 1 

whilst the energy equation reduces to 

where I = c ~ T .  (11) 

In accordance with the usual boundary-layer theory, the pressure gradient 
across the layer is neglected, so that, in (9), ap/ae is found from its value im- 
mediately behind the shock, which is msumed to be within the boundary layer. 
Thus (4) gives 

!?& = -- Misine cosOpo; 4Y 
ae (Y+1) 

and by replacing M i  by Vi/c; and then ci by ypo/po, this becomes 

On substituting for ap/ae = ap,/ar3 in (9), we get 

To compare this work with that of Homann, expressed in the boundary-layer 
co-ordinates (qy),  we simply replace aB and asine by 5, and r-a by y. On 
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substituting for the flow variables the forms (6) and (7), we are able to reduce the 
equations of motion to ordinary differential form. Equation (13) becomes 

and we shall also use (10) for 0 = 0, namely 

where henceforth I@) ,  T(r) ,  p(r) will signify values for 0 = 0. 
To satisfy the continuity equation, we now choose a Stokes stream function @, 

such that a$ a@ 
ae ar 

a sin Bpv, = - p1 - and sin Bpve = p1 -; 

and on substituting (6), we see that $ takes the form 

and (16) reduces to 
@ = Y ( r )  singe, 

v=-- - - \ r  2 P1 and u = A - .  P dY 
P dr 

Transformation of the equations 
The effect of compressibility is made less marked by choosing a Howarth variable 

C being a constant. We put also - - 
w.1 = Bf (71, 

where B is another constant, and 

where the prime signifies differentiation with respect to 7; and substituting (22) 
in equation (la), we get 

Now, since pp = const., if we choose 

c = (&)$ and B = (V,vla)f, 

the above equation reduces to - 
4(Y - 1) f 1" + 2ff" - f 'a+- 
(y+ 1)2 g = O ,  

and the energy equation (18) becomes 

g" + 2cfg' = 0, 

where the Prandtl number u = 0.72 for air. 

(24) 

(25) 
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The equations (24) and ( 2 5 )  represent a fifth-order system, but in addition the 
stand-off distance of the shock is unknown. We require therefore six boundary 
conditions to solve the equations. These are listed below. 

E'irst at the sphere 7 = 0, the no-slip conditions give 

v, = ve = 0, or f ( 0 )  = f ' ( O )  = 0; (26) 

and since insignificant heating is supposed to have occurred, T(0)  = To; whence 
from ( 5 )  

The remaining three conditions are found at  the shock, 7 = rl say. From the 
shock relations ( 2 )  and (3), and using ( 2 2 ) ,  we have 

where B = (V,v,a)*: and substituting for vl this becomes 

where 

are the Reynolds number and Mach number. Hence we find 

Using a simplified coding technique for a machine such aa the Mercury 
electronic computer, the equations can be integrated from the sphere dong an 
outward normal. Five boundary conditions at the sphere are needed to do thia, 
and so two additional conditions onf"(0) and g'(0) are prescribed, approximate 
values being guessed from a crude polynomial solution. 
As the problem stands, the shock-wave position is determined when f '(7) and 

g(7) are simultaneously equal to 1. It would therefore be necessary to try many 
runs with varying values off"(O), g'(0) andg(0) before this could be accomplished, 

Further transformations 
To get over the above difficulty, we first put 

so that ( 2 4 )  and ( 2 6 )  become 

and 
f " ' + 2 f f U - f ' 2 + Q  = 0, 

a a + 2 u f @  = 0, 

(32) 
(33) 
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whereas the boundary conditions on U are 

2 
G(0) = - 

YM:' (34) 

A shock-wave position is now determined whenf'(ql) = 1, and represents the 
solution for that value of y which satisfies (35). Unfortunately, y, No and R,, are 
now determined uniquely by the boundary conditions (28), (34) and (35), and 
thus only one shock-wave flow is found for each set of initial conditions. This 
transformation then offers little improvement in the solution. Our final trans- 
formations, however, enable us to determine several flows for each integration. 

First we choose a new variable 
a = hq, (36) 

f h )  = h ( a h  G(rl) = h%(a), (37) 

x'"+2xx"-x'2+y = 0, (38) 

(39) 

where h is a constant, and then by putting 

we are able to retain (32) and (33) in the same simple form: 

y" + 2my' = 0, 

where the primes refer in this cme to differentiation with respect to a. 
The boundary conditions, however, now include an arbitrary constant A, and 

y,  Af,, and R, are not fixed by the boundary oonditions, but depend on the value 
A takes. 

We now have the conditions at a = 0 

and 

z(0) = d ( 0 )  = 0, 

2 
Y(0) = yMgh4' 

At a = al, my, where a1 = hql, we have 

and (44) 

It should be noted that real solutions of (43) and (44) exist provided d(al) > 0 
and y(al) < 0.6, and that the smaller of the two solutions of (44) for y is chosen on 
physical grounds. 
The two most important advantages gained by these transformations are: 

(1) The boundary conditions can now be solved uniquely for y, and R, at each 
inteed step (subject to the above conditions). (2) There is no loss in generality 
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if we fix y(0) and thus reduce the initial conditions to be varied from three to 
two. A convenient value useful in the polynomial solution is seen to be 0.02. 

Another advantage is the added usefulness of the crude polynomial series 
method for finding suitable values of x”(0) and y’(O), since no longer does this type 
of solution have to apply to specific values of y, Mo and R,. In  fact it is only 
necessary to guarantee that %‘(a) and y(a) increase steadily with a to assure 
satisfactory solutions of (43) and (44) and thus of (41) and (42) also. 

3. Presentation of the results 
The tables 

The results obtained from the Mercury electronic computer by integrating 
equations (38) and (39) for 60 evenly spaced values of x”(0) and y’(0) were printed 
in the form of the tables 1 to 4, and others which are included in the author’s 
thesis (Herring 1958). 

~ ~~ 

1 2 3 4 5 6 7 8 9 10 

p w a  r(a)v(.) z’(a) z”(a)/v(a) v(a) yJ’ (4 /v(a)  

a = o  0.000 0.000 0.000 30.000 0.020 12.500 
a = 0.2 0.009 0.001 0.119 8.445 0.070 3.568 
a = 0.6 0.057 0-018 0.347 3.221 0.169 1.436 
a = 1-0 0.143 0.075 0.550 1.776 0.262 0.831 

0.264 0.184 0.717 1.093 0-340 0-505 
0.412 0.340 0.849 0.730 0.397 0.290 
0.579 0.527 0-953 0.545 0.433 0-147 

- 0.756 0.728 1.041 0.464 0.451 0.063 b - a  

a 0.937 0.938 1.122 0.435 0.458 0.021 Y Mll 8, 
1 0.1158 1.121 1.156 1.201 0.427 0.460 0.006 1.497 9.82 4,860 

$2 0.1020 1.305 1.386 1.280 0.425 0.460 0.001 1.407 10.79 7,700 
3 0.0908 1-489 1.629 1.358 0-425 0.461 0.000 1.343 11.72 11,600 

*4 0-0816 1-673 1-886 1.436 0.425 0.461 0.000 1.294 12.63 16,810 
5 0.0738 1.858 2.158 1.514 0.425 0.461 0.000 1.255 13.52 23,690 
6 0.0672 2.042 2.444 1.593 0.425 0.461 0.000 1.225 14.39 32,260 

*7 0.0615 2.228 2-745 1.671 0.425 0-461 0.000 1-200 15.25 43,170 

TABLE 1. The shock data used in figures 2 and 6 are indicated by *. Rows in this table only 
are printed at intervals of a = 0-4 except for the first step. 

In  each table the columns are numbered from 1 to 10. The columns 2-7 are 
functions of a, chosen to be directly proportional to the velocity and temperature 
variables, and columns 1, 8, 9 and 10 give the shock stand-off distances and the 
values of y, Mo and R,. The rows are printed at  intervals of a = 0-2 except in 
table 1 where intervals of a: = 0.4 are used for brevity, and those numbered 
represent the positions of the shock waves. It must be remembered that each 
table gives a picture of the flow across several completely independent boundary 
layers. This is clear from the relationships connecting the columns, which are 
functions of a, with those expressed in terms of r .  The constants connecting them, 
which are different for each shock, are inserted in square brackets, in the following 
expressions. 

Column 1 gives the ratio of the stand-off distances of the shocks to the sphere 
radius, namely 

(45) 
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1 

b-a 
a 
- 

*1 0.0945 
2 0.0821 

*3 0.0725 
4 0.0648 
6 0.0584 

*8 0.0529 
7 0.0482 

2 3 4 5 6 7 8 

/.Y(B) dB 4 4 Y ( 4  z ' (4  s"(a)/y(a) Y(4 y'(a)ly(a) 

o*ooo 0.000 0.OOO 40.000 0.020 12.500 
0.009 0.001 0.159 11.303 0.070 3.567 
0.028 0.00s 0.316 6.461 0.120 2.063 
0.057 0.024 0.468 4.417 0.168 1.424 
0.095 0.054 0.613 3.291 0.215 1.054 
0.143 0.100 0.751 2-580 0.259 0.801 
0.198 0.164 0.880 2.099 0.298 0.609 
0.261 0.244 1.001 1.766 0.331 0.455 Y 
0.330 0.340 1.114 1.535 0.358 0.330 1.423 
0.404 0.448 1.221 1.377 0.378 0.230 1.351 
0.481 0.565 1.323 1.275 0.393 0.152 1.296 
0.560 0.689 1.421 1.211 0.403 0.094 1.253 
0.641 0.819 1.518 1.175 0.408 0.054 1.218 
0-723 0.955 1.614 1-165 0.412 0.029 1.190 
0+306 1.096 1.709 1.146 0.413 0-014 1.166 

TABLE 2. The shock data used in figures 3 and 7 are indicated by *. 

9 

MO 
9.34 

10.50 
11-62 
12.70 
13-76 
14.79 
15.82 

10 

Ro 
660 

1,160 
1,900 
2,960 
4,410 
6,340 
8,870 

1 

b-a 
a 

1 0.1037 
'2 0.0921 
3 0.0826 

*4 0.0747 
6 0.0679 

*6 0.0620 

2 3 4 5 6 7 8 
*n 

0.000 
0.017 
0.060 
0.128 
0.221 
0-336 
0.470 
0.621 
0.784 
0.955 
1.133 
1.314 
1.496 
1.680 
1.864 

0.000 
0.004 
0.027 
0.086 
0.194 
0.358 
0-578 
0.847 
1.152 
1.484 
1.834 
2.198 
2.576 
2.969 
3.380 

0~000 
0.239 
0.472 
0-693 
0.900 
1.089 
1.260 
1.413 
1-553 
1.682 
1-804 
1.922 
2.039 
2.154 
2.270 

60.000 
7.891 
4.091 
2.660 
1.900 
1.433 
1.127 
0.925 
0.794 
0.714 
0.668 
0.644 
0.633 
0.628 
0.627 

0.200 
0.150 
0.279 
0-404 
0.522 
0.628 
0.717 
0.789 
0.841 
0.876 
0.898 
0.910 
0.916 
0.919 
0.920 

32.500 
4.326 
2.289 
1.513 
1.078 
0.783 
0.563 
0.391 
0.258 Y 
0.159 1.474 
0.091 1-396 
0.047 1.336 
0.022 1.289 
0.009 1.251 
0.004 1.220 

TABLE 3. The shock data used in figures 4 and 8 are indicated by *. 

9 

MO 
13.85 
15.27 
16.63 
17.96 
19.26 
20.55 

10 

RO 
3,120 
5,030 
7,680 

11,270 
15,990 
22,070 

1 

b-a 
a 

1 0.1013 
*2 0.0844 
*3 0.0724 
4 0.0632 

*6 0.0668 

2 3 

0.000 0.000 
0.017 0.004 
0.060 0.031 
0.128 0.100 
0.220 0.226 
0.334 0.417 
0.467 0.670 
0.614 0.978 
0.773 1-327 
0.938 1.705 
1.108 2.105 

4 5 

s ' (4  z"(a)/y(a) 

0.000 70.000 
0.279 9.226 
0.552 4-812 
0-813 3.164 
1.061 2.301 
1.291 1.781 
1.503 1.450 
1.700 1.239 
1.886 1.110 
2.063 1.036 
2.235 0.997 

6 

Y(4 

0.020 
0.150 
0.279 
0.403 
0.519 
0-621 
0.705 
0.769 
0.814 
0.842 
0-857 

7 8 

y ' (a ) /y (a)  

32.500 
4.324 
2.284 
1.501 
1.058 
0.755 Y 
0.527 1.480 
0.351 1.375 
0.219 1.304 
0.125 1.251 
0.065 1.209 

9 10 

Mo Ro 
12.36 880 
14.50 1,850 
16.51 3,480 
18.45 6,010 
20.32 9,760 

TABLE 4. The shock data used in figures 5 and 9 are indicated by *. 
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whereas column 2 gives 

J U  

This can be converted to (r - a)/a upon multiplying by [(y + l)/8z(al) %‘(a1)], but 

this is more quickly found from (46) aa [ (b/u - 1)/r y(p) dp] by dividing the 
0 

corresponding values in columns 1 and 2. Note that the suffix 1 denotes the values 
immediately behind the shock and these are given in numbered rows. 

The next five columns, 3-7, are connected to the velocities and temperature aq 
follows. Column 3 gives %(a) y(a), where the ratio of the radial component of the 
velocity behind the shock to that ahead is - w(r) cos 8/% cos 8, where 

The transverse component is quickly found from column 4, which gives %’(a), 
since 

To obtain [du(r)/dr]/&/u, column 6 must be multiplied by [~Z(CZ,)/(Y + I)]. 
The temperature ratio is 

where y(a) is given in column 6, and k d l y  column 7 gives y’(a)/y(a), where the 
constant needed to give [dT(r)/dr]/[T,/a] is 

Certain information can be found by direct reading of the tables. For instance, 
the edges of the velocity and temperature boundary layers are approached when 
columns 5, 6 and 7, which are related to duldr, T and dT/dr ,  tend to a constant 
value. This is very clearly seen in, for example, table 1 (see also figure 2), and in 
this, as in a few other cases, the shocks are well outside the boundary-layer 
section. The assumption of a constant pressure throughout the region behind the 
shock (12) will be less accurate in these cams. 

In the table mentioned above the thickness of the velocity and temperature 
boundary layers are seen to be of the same order, and this is due to the nearness 
of the Prandtl number (0.72) to unity. 

The grwphs 

Three temperature and two transverse velocity profiles have been drawn for 
tables 1-4. Fi@;ure’s 2-6 give the temperature and figures 6-9 the velocity profiles 
for each of these tables, taken in order. The magnitude of the temperatures 
reached depends directly on the shock relations and a comparison of figures 2 
and 4 gives some idea of the range considered. 
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1 I I I I I 
02 0.04 006 008 0.10 

(r - .)la 
FIGURE 2 

FIGURE 2. Temperature profiles plotted from data given in table 1. N.B. In  figures 2-9 
a shock wave is denoted by a stroke I and approximete boundary-layer edges by a cross x ; 
the number above is the curve number. Curve 1: y = 1.200, M ,  = 15.26, R, = 43,170. 
Curve 2: y = 1.294, M ,  = 12.63, R, = 16,810. Curve 3: y = 1.407, M ,  = 10.79, 
R, = 7700. 
FIGURE 3. Temperature profiles plotted from data given in table 2. In  curves 1 of Qyres 3-6 
the shock-wave positions and the boundary-layer edges suggested by the profles have been 
marked. In actual fact of course, the boundary layer will end at the shock wave, since 
ahead of it the temperature assumes the constant value To, and SO outside the shock the 
curve is shown aa 8 dotted line. Curve 1: y = 1.190, M ,  = 14.79, R, = 6340. Curve 2: 
y = 1.296, M ,  = 11.62, R, = 1900. Curve 3: y = 1.423, M ,  = 9.34, R, = 660. 

I I I I I 
0 002 0.04 0.06 008 0.10 

1 

(r - .)/a (r - .)/a 
FIGURE 4 FIQURE 6 

FIG- 4. Temperature profiles plotted from data given in table 3. Curve 1 : y = 1.220, 
M,.= 20.66, R, = 22,070. Curve 2: y = 1.289, M ,  = 17-96, R, = 11,270. Curve 3: 
y = 1.396, M ,  = 16.27, R, = 6030. 
FIG- 6. Temperature profiles plotted from data given in table 4. Curve 1: y = 1.209, 
M ,  = 20-32, R, = 9760. Curve 2: y = 1.304, M ,  = 16-51, R, = 3480. Curve 3: 
y = 1.376, Me = 14.60, R, = 1860. 
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Naturally in this problem we are most interested in, for example, the shock 
stand-off distance, or the boundary-layer thickness as a function of the Reynolds 
number R, or Mach number M,. To find the variation with R,, we must maintain 
y and ill,, at constant values. 

A comparison of curves 1 in figures 2 and 3 and also curves 1 in figures 4 and 5, 
where in each pair y and No are approximately constant, gives an indication of 
this behaviour. The approximate boundary-layer edges have been marked on 
these graphs with a cross and in these examples as R, increases the gradients get 
larger and thus the boundary-layer thickness decreases. However, at the same 
time it is surprising that the shock stand-off distance (marked with a dash) 
incremes with R,. This last result is borne out in a more detailed investigation 
later. 

0 8  

06 

0 4  

0 

5 

0 2  

I 
0 002 004 006 008 0.10 

FIGURE 6 FIGURE 7 

FIGTJRE 6. TramVerne velocity profile plotted from data given in table 1. Curve 1: 
y = 1-200, M, = 15.26, R, = 43,170. Curve 3: y = 1.407, M ,  = 10-79, R, = 7700. 
FIUURE 7. Transverse velocity profile plotted from data given in table 2. Curve 1: 
y = 1.190, M ,  = 14.79, R, = 6340. Curve 2: y = 1.423, M ,  = 9.34, R, = 660. 
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FIQIJRE 8. Transverse velocity profile plotted from data given in table 3. Curve 1: 

FIGURE 9. Transverse velocity profile plotted from data given in table 4. Curve 1: 
y = 1.220, M ,  = 20.66, R, = 22,070. C W ~  3: 7 = 1.396, Mo = 15-27, R, = 5030. 

= 1.209, M ,  = 20.32, R, = 9760. Cunre 3: y = 1.376, M ,  = 14.50, R, = 1860. 



The bmnda y layer in hypersonic $ow past a sphere 269 

In figures 6-9 showing the transverse velocity profiles, the edge of the boundary 
layer is defined by a region of approximately constant shear flow. In other words, 
in a region where viscosity has little effect the vorticity shed by a shock wave of 
constant curvature is constant. The outer parts of these graphs agree quite well 
with the exact inviscid incompressible solutions obtained by Lighthill (1957) for 
a gas with varying specific heats. The effect of viscosity in reducing the velocity 
quickly to zero is very marked. 

The remaining graphs, figures 10-16, show the variation of certain quantities at 
constant values of y and &, and provide a very interesting insight into their 
behaviour in a hypersonic flow. 

Interpolation on a large scale is an unfortunate necessity in this method, where 
y, Mo and Ro are not predetermined, and to maintain y and H, constant, a three- 
point linear scheme between two tables was used. 
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FIGURE 10. The Reynolds number aa a function of the ratio stand-off distance of the shock 
to sphere radius, when y = 1.4. Curve 1: M ,  = 16. Curve 2: Mo = 12. Curve 3: M ,  = 9. 
FIGURE 11. The Reynolds number aa a function of the ratio stand-off dietance of shock to 
sphere radius, when y = 1-3. Curve 1: M ,  = 18. Curve 2: M ,  = 16. Curve 3: Mo = 12. 

Figures 10-12 show the variation of R, with the ratio of stand-off distance to 
sphere radius for a number of constant values of y and A&,. The interesting result, 
hinted at previously, that the shock stand-off distance increases with Reynolds 
number, is here verified, and the asymptotes to the graph (which are independent 
of Mach number) are drawn for each value of y. Can this mean that we have 
negative displacement thicknesses? A comparison of figure 2 with 3, and figure 4 
with 5 gives an indication that the boundary-layer thickness decreases with 
increase in Reynolds number and an examination of the product pu in these 
cases shows that it decrectses from a maximum at the shock to a minimum at the 

sphere. In other words, the displacement thickness given by (ulpl - u(r)p(r))  dr 

is positive. The shock distance, however, is not governed by the boundary-layer 
1: 
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thickness, for in table 1 the shocks are outside, and in tables24 they are inside the 
boundary layer, and thus it is probable that this idea of displacement thickness is 
erroneous for the region behind the shock. If the shock position depended more 
upon distribution of mass than of mass flow, i.e. depended more upon p and pu, 

then a ‘mass defect’ given by (p l -p ( r ) )dr  would certainly be negative, and 

the shock distance would increase with increase in the Reynolds number, 
A rough interpolation within figures 10-12 to maintain constant y ,  and between 

them to maintain constant &, shows that the shock distance decreases with 
increase in Mach number and with decrease in y, respectively. A simple analysis 
of the boundary conditions on the density at the shock and the sphere, and the 
knowledge that the density decreases continuously outwards from the sphere 
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FIGURE 12. The Reynolds number as a funotion of the ratio stead-off of shock to sphere 
radius, when y = 1.2. Curve 1: M ,  = 18. Curve 2: M ,  = 16. curve 3: M,, = 12. 

provides a simple explanation of these results. The strong shock condition on the 
density (2) is independent of Mhch number, whilst the density at the sphere, 
which, shoe T(0) = To, is dependent only upon the pressure given by (4), in- 
creases with Mach number. The region therefore is further compressed and the 
shock wave moves closer to the body as the Mach number increases. A similar 
consideration of (2) and (4) shows that aa y increases, the density just behind the 
shock decreases, whilst at the sphere it remains effectively constant. The shock in 
this owe, therefore, movea away from the sphere aa y increases. 

A note here about the error caused by assuming the strong shock conditions 
on the density will be of value. The oblique shock relation for the density is 

where term O ( P )  have been neglected. The strong shock relations are only valid 
if +H:(y - 1) $= 1 which means, for example when y = 1.4, that Hg must be much 
p b r  than 6 for these relations to be used. The lowest Mach number considered 
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at y 5; 1.4 is 9, and substituting in (60) gives pl/po = 0*94(y+ l)/(y- 1). It is 
clear from this that the strong shock conditions tend to overestimate the density, 
and so the correction to the graphs involves a small shift to the right to give a 
compensating increase in the shock stand-off distance. This correction will of 
course decreaae aa the Mach number increaaes. 

Figures 13 and 14, where the ratio of ( r - a )  at T = 0.9821, to (r- a) at T = T,, 
i.e. (b-a), is plotted against log,,R,, give an indication of the variation of the 
boundary-layer thickness with Reynolds number. The decreaae in the ratio with 
increase in R, shows clearly that the temperature gradients are increaaing, and 
this supports the idea that the boundary-layer width is decreasing with increaae 
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Fxaum 13. Boundary-layer thickneas aa a function of shock stand-off distance, BB in&- 
mted by the ratio [ ( r -a )~ ,~*~r , ] / (b -a ) ,  for y = 1.3 and M ,  = 18. 
FIGUILE: 14. Boundary-layer thickness aa a function of the shock stand-off distance aa 
indiaeted by the ratio [ (r-a)~-o.s8~1]/(b-a) ,  for y = 1.2 and Mo = 16. 

in B,,. At low Reynolds number, where the profle approximates to a straight line, 
the ratio approaches 0.98, and it decreases through a point of inflexion before 
tending to a further constant value for large values of R,. 

Finally figures 16 and 16 show the variation of skin friction with the Reynolds 
number, where the skin-friction coefficient is defined aa 

and it is noticeable that, with y and it& held constant, cf is solely dependent upon 
the initial value of ."(a). Once more the influence of the shock wave on the flow 
can be clearly seen, for, instead of cfRi having a constant value aa suggested by 
boundary-layer theory, it is seen to decreaae with increase in &. In fact, when 
R, is of order los, c, behaves more like Rcl. However, the graphs seem to indicate 
that cfa does approach a constant value at higher Reynolds numbers, and this is 
not surprising since the tabula,kd results indimte that when R, is of order lo4 the 
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shock waves lie well outside the boundary layer, and thus one would expect the 
normal boundary approximations to apply. 

The approximate solutions which have been found for the problem have only 
been explained in part, but further clarification should be possible a-a more 
becomes known about flows at very high speeds. 
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FIGURE 15. The skin-friction coefficient aa a function of the Reynolds number, for y = 1.3 
and Mo = 18. 
FIG~JBE 16. The skin-friction coefficient aa a function of the Reynolds number, for y = 1.2 
and Mo = 15. 
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